Sains Malaysiana 54(12)(2025): 2887-2896
http://doi.org/10.17576/jsm-2025-5412-07
Extraction and
Characterization of Inulin from Taro Beneng (Xanthosoma undipes K. Koch)
(Pengekstrakan dan Pencirian Inulin daripada Keladi Beneng (Xanthosoma undipes K. Koch))
ERIS, F.R.1,2,*,
PAMELA, V.Y.1, KUSUMASARI, S.1, MEINDRAWAN, B.1 & SARI, A.K1
1Department of Food Technology, Faculty of
Agriculture, University of Sultan Ageng Tirtayasa, Banten, 42111, Indonesia
2Center of Excellence Local Food Innovation,
University of Sultan Ageng Tirtayasa, Banten, 42111, Indonesia
Received: 7 January 2025/Accepted: 11 December 2025
Abstract
Inulin acts as a low-calorie dietary fiber and as a
prebiotic that can stimulate the growth of probiotic bacteria in the intestines
of humans. The development on the production of inulin continues to be carried
out through research. This study aimed to determine the optimal acetone
concentration and precipitation time for extracting high-purity inulin from Beneng taro (Xanthosoma undipes K. Koch) and to evaluate the physicochemical
characteristics of the extract. A factorial randomized block design was applied
with three acetone concentrations (20%, 45%, and 70%) and three precipitation
times (12, 18, and 24 h). The extraction yield, water content, whiteness
degree, solubility, inulin content, and functional groups (FTIR) were analyzed.
The results showed that acetone concentration and precipitation time
significantly affected yield, water content, and solubility (p < 0.05),
while their interaction significantly influenced inulin content. The highest
average yield (10.30%) was obtained with 70% acetone, the lowest average water
content (4.97%) with 70% acetone, and the highest average solubility (34.58%)
with a 24 h precipitation time. The greatest inulin content (53.05%) resulted
from the combination of 20% acetone with 12 h precipitation, showing 97.20% spectral
similarity to commercial inulin. The optimal extraction condition was 20%
acetone for 12 h, producing inulin with high purity, moderate yield (9.16%),
and favorable physicochemical properties. These findings demonstrate Beneng taro’s potential as a local inulin source for
functional food applications
Keywords: Acetone; Beneng taro; extraction; inulin
Abstrak
Inulin bertindak sebagai serat diet rendah kalori dan sebagai prebiotik yang boleh merangsang pertumbuhan bakteria probiotik dalam usus manusia.
Pembangunan penghasilan inulin terus dijalankan melalui penyelidikan. Kajian ini bertujuan untuk menentukan kepekatan aseton optimum dan masa pemendakan untuk mengekstrak inulin berketulenan tinggi daripada keladi Beneng (Xanthosoma undipes K. Koch) dan untuk menilai ciri fizikokimia ekstrak tersebut. Reka bentuk blok rawak faktorial telah digunakan dengan tiga kepekatan aseton (20%, 45% dan 70%) dan tiga masa pemendakan (12, 18 dan 24 jam). Hasil pengekstrakan, kandungan air, darjah keputihan, keterlarutan, kandungan inulin
dan kumpulan berfungsi (FTIR) telah dianalisis.
Keputusan menunjukkan bahawa kepekatan aseton dan masa pemendakan mempengaruhi hasil, kandungan air dan keterlarutan dengan ketara (p < 0.05), manakala interaksi mereka mempengaruhi kandungan inulin dengan ketara. Purata hasil tertinggi (10.30%) diperoleh dengan 70% aseton, purata kandungan air terendah (4.97%) dengan 70% aseton dan purata keterlarutan tertinggi (34.58%) dengan masa pemendakan 24 jam. Kandungan inulin terbesar (53.05%) terhasil daripada gabungan 20% aseton dengan pemendakan 12 jam, menunjukkan persamaan spektrum 97.20% dengan inulin komersial. Keadaan pengekstrakan optimum ialah 20% aseton selama 12 jam, menghasilkan inulin dengan ketulenan tinggi, hasil sederhana (9.16%) dan sifat fizikokimia yang baik. Penemuan ini menunjukkan potensi keladi Beneng sebagai sumber inulin tempatan untuk aplikasi makanan berfungsi.
Kata kunci: Aseton; keladi Beneng; pengekstrakan; inulin
REFERENCES
Alabadi, A.M.D.
& Abood, S.C. 2020. Microwave-assisted extraction
of inulin from Jerusalem artichoke and partial acid hydrolyses. The
Iraqi Journal of Agricultural Science 51(1): 401-410.
Alexander,
I.J., Bulan, R., Zaidar, E., Silaban,
R., Soripada, T.A. & Sirait,
G. 2023. The analysis of inulin from yam tubers using FTIR (Fourier Transform Infra Red). International Journal of Computer
Applications Technology and Research 12(3): 53-55. https://doi.org/10.7753/IJCATR1203.1012
AOAC. 2007. Official Methods of Analysis 18th. MD: AOAC International. Gaithersburg.
AOAC. 1990. Official Methods of Analysis of
the Association of Analytical Chemists. Washington.
Ciptaningrum, A.B. 2015. Extraction of inulin from gembili tuber chips (Dioscorea esculenta) with variations in the ratio
of chips and water and evaluation of their potential as prebiotics. Master
Thesis. Gadjah Mada University (Unpublished).
Dangre, P.V., Kotkar, K.S., Pimple, A.D. & Meshram, S.S. 2025.
Chemistry, isolation, and pharmaceutical applications of inulin. Current
Drug Therapy 20(1): 8-17. https://doi.org/10.2174/0115748855274579240103042126
Das
Kirtania, M., Kahali, N. & Maity, A. 2021. Inulin-based hydrogel. In Plant
and Algal Hydrogels for Drug Delivery and Regenerative Medicine, edited by Giri, T.K. & Ghosh, B. Woodhead Publishing. pp. 261-292. https://doi.org/10.1016/B978-0-12-821649-1.00005-2
Diaz, A., Garcia, M.A.
& Dini, C. 2022. Jerusalem artichoke flour as food ingredient and as source
of fructooligosaccharides and inulin. Journal of
Food Composition and Analysis 114: 104863. https://doi.org/10.1016/j.jfca.2022.104863
El-Kholy, W.M., Aamer, R.A. & Ali, A.N.A. 2020.
Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the
properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences 65(1): 59-67. https://doi.org/10.1016/j.aoas.2020.02.002
Eris, F.R., Pamela,
V.Y., Kusumasari, S. & Meindrawan,
B. 2024. Extraction of inulin from Beneng tuber (Xanthosoma undipes)
and its application to yogurt. Future Foods 9: 100339. https://doi.org/10.1016/j.fufo.2024.100339
Eris, F.R., Riziani, D., Pamela, V.Y., Febriansah,
M.R., Kusumasari, S. & Sari, A.K. 2022. A review
of the potential of beneng taro as material for
inulin making and its application to yogurt. In 2nd International
Conference for Smart Agriculture, Food, and Environment (ICSAFE 2021) Atlantis
Press. pp. 37-44.
Fachrudin, A.R. 2016. Performance analysis of a closed thermosyphon with varying concentrations of acetone and ethanol mixtures. Info Teknik Journal 17(1): 85–94.
Firmansyah,
J. 2018. Scientific explanation of boiling water at room temperature. Indonesian
Journal of Philosophy 1(1): 75-79.
Hariyadi, S., Narulita, E. & Amien Rais, M. 2018. Perbandingan metode lisis jaringan hewan dalam proses isolasi DNA genom pada
organ liver tikus putih (Rattus
norvegicus). Proceedings
Biology Education Conference 15(1): 689-692.
Hersoelistyorini, W., Dewi, S.S. & Kumoro, A.C. 2015. Sifat fisikokimia dan organoleptik tepung mocaf (modified cassava
flour) dengan fermentasi menggunakan ekstrak kubis. Proceedings of Engineering and Design Field, Institute
for Research and Community Service, Universitas Muhammadiyah Semarang (UNIMUS).
Journal of Chemical and Industrial Technology 2(1): 246-256.
Hilman, A., Harmayani, E. & Cahyanto, M. 2018. Inulin extraction and characterisation of fresh and chip gembili (Dioscorea esculenta) extract by
ultrasound-assisted extraction. Proceedings
of the International Conference of Science, Technology, Engineering,
Environmental and Ramification Researches (ICOSTEERR) 1: 47-53. https://doi.org/10.5220/0010084000470053
Huynh, B.L., Palmer, L., Mather, D.E. &
Wallwork, H. 2008. An improved method for quantitative analysis of total fructans in plant tissues. Journal of the Science of Food and Agriculture 88(9): 1584-1591. https://doi.org/10.1002/jsfa.3253
Ida Ayu Maria Christina,
I Nengah Kencana & I
Dewa Gede Mayun Permana. 2018. Pengaruh metode pengeringan dan jenis pelarut terhadap rendemen dan kadar kurkumin ekstrak kunyit (Curcuma domestica Val.). Jurnal Ilmiah Teknologi Pertanian3(2): 319-324.
Ku, Y., Jansen, O., Oles,
C.J., Lazar, E.Z. & Rader, J.I. 2003. Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chemistry 81(1):
125-132. https://doi.org/10.1016/S0308-8146(02)00393-X
Jiang,
H., Zhang, N., Xie, L., Li, G., Chen, L. & Liao, Z. 2025. A comprehensive
review of the rehydration of instant powders: Mechanisms, influencing factors,
and improvement strategies. Foods 14(16): 2883. https://doi.org/10.3390/foods14162883
Kusmiyati, N., Wahyuningsih, T.D. & Widodo. 2018.
Extraction and identification of inulin-type fructooligosaccharides from Dahlia pinnata L. Asian Journal of Chemistry 30(2): 355-358. https://doi.org/10.14233/ajchem.2018.20965
Lailani, T.S. 2020. Extraction of phycoerythrin pigment from red seaweed and its potential as an antioxidant compound. Bachelor’s thesis. Syarif Hidayatullah State Islamic University Jakarta.
Lima,
E.C.D.S., Manhães, L.R.T., Santos, E.R.D., Feijó, M.B.D.S. & Sabaa-Srur,
A.U.D.O. 2021. Optimization
of the inulin aqueous extraction process from the açaí (Euterpe oleracea,
Mart.) seed. Food Science and Technology 41: 884-889. https://doi.org/10.1590/fst.24920
Liu, Z., Mouradov, A., Smith, K.F. & Spangenberg, G. 2011. An
improved method for quantitative analysis of total fructans in plant tissues. Analytical Biochemistry 418(2): 253-259. https://doi.org/10.1016/j.ab.2011.08.004
Niu, L., Zhang, H., Wu,
Z., Wang, Y., Liu, H., Wu, X. & Wang, W. 2018. Modified TCA/acetone precipitation
of plant proteins for proteomic analysis. PLoS ONE 13(12): e0202238.
Petkova, N., Ognyanov, M. & Denev, P. 2014. Isolation
and characterization of inulin obtained from taproots of common chicory (Cichorium
intybus L.). Scientific Papers, University of Plovdiv “Paisii Hilendarski”. 39(5):
25-34.
Petkova,
N., Hambarliyska, I., Ivanov, I., Ognyanov, M.,
Nikolova, K., Ibryamova, S. & Ignatova-Ivanova,
T. 2025. Physicochemical, functional, and antibacterial properties of
inulin-type fructans isolated from dandelion (Taraxacum
officinale) roots by “green” extraction techniques. Applied
Sciences 15(8): 4091. https://doi.org/10.3390/app15084091
Rubel, I.A., Iraporda, C., Novosad, R., Cabrera, F.A., Genovese, D.B.
& Manrique, G.D. 2018. Inulin rich carbohydrates extraction from Jerusalem
artichoke (Helianthus tuberosus L.) tubers and
application of different drying methods. Food Research International 103:
226-233. https://doi.org/10.1016/j.foodres.2017.10.041
Saengkanuk,
A., Nuchadomrong, S., Jogloy, S., Patanothai, A. & Srijaranai, S. 2011. A
simplified spectrophotometric method for the determination of inulin in
Jerusalem artichoke (Helianthus tuberosusL.)
tubers. European Food Research and Technology 233(4): 609-616. https://doi.org/10.1007/s00217-011-1552-3
Sağcan, N., Sağcan, H.,
Bozkurt, F., Güneş, A.N.B., Fakir, H., Dertli, E. & Sağdıç,
O. 2024. Optimization of inulin extraction from chicory roots and an
ultrafiltration application to obtain purified inulin and hydrolyzed fructooligosaccharides. Journal of Agricultural
Sciences 30(1): 166-178. https://doi.org/10.15832/ankutbd.1338572
Sarkar,
R., Bhowmik, A., Kundu, A., Dutta, A., Nain, L., Chawla, G. & Saha, S.
2021. Inulin from Pachyrhizus erosus root and its production
intensification using evolutionary algorithm approach and response surface
methodology. Carbohydrate Polymers 251: 117042. https://doi.org/10.1016/j.carbpol.2020.117042
Shi, L. 2016.
Bioactivities, isolation and purification methods of polysaccharides from
natural products: A review. International Journal of Biological
Macromolecules 92: 37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100
Tai,
Y., Shen, J., Luo, Y., Qu, H. & Gong, X. 2020. Research progress on the ethanol
precipitation process of traditional Chinese medicine. Chinese Medicine 15:
84. https://doi.org/10.1186/s13020-020-00366-2
Wibawanti, J.M.W., Mulyani, S., Legowo, A.M., Hartanto, R., Al-Baarri,
A. & Pramono, Y.B. 2021. Characteristics of
inulin from mangrove apple (Soneratia caseolaris) with different extraction
temperatures. Food Research 5(4): 99-106. https://doi.org/10.26656/fr.2017.5(4).662
Yeoh, G.L., Mohd Rozalli, N.H., Zulkurnain, M. & Mohammadi Nafchi, A. 2025. Assessment of inulin on anti-freezing
properties of silken tofu coagulated with glucono-delta-lactone
and calcium sulphate. Musfirah and Mohammadi Nafchi, Abdorreza, Assessment of Inulin on Anti-Freezing Properties
of Silken Tofu Coagulated with Glucono-Delta-Lactone
and Calcium Sulphate. http://dx.doi.org/10.2139/ssrn.5194958
Yudhistira, B. & Siswanti, S. 2020.
Pengaruh rasio pelarut dan waktu pengendapan pada isolasi inulin ubi jalar (Ipomoea
batatas). Agrointek: Jurnal Teknologi Industri Pertanian 14(2): 130-138.
Zhang, X., Zhu, X., Shi,
X., Hou, Y. & Yi, Y. 2022. Extraction and purification of inulin from
Jerusalem Artichoke with response surface method and ion exchange resins. ACS Omega 7(14):
12048-12055. https://doi.org/10.1021/acsomega.2c00302
Zhang,
Y., Liu, R., Song, B., Li, L., Shi, R., Ma, X., Zhang, L. & Li, X. 2024. Recent advances in
inulin polysaccharides research: Extraction, purification, structure, and
bioactivities. Chemical and Biological Technologies in Agriculture 11:
136. https://doi.org/10.1186/s40538-024-00667-w
*Corresponding
author; email: fitria.eris@untirta.ac.id